Search
Research
Microbiomic Analysis on Low Abundant Respiratory Biomass Samples; Improved Recovery of Microbial DNA From Bronchoalveolar Lavage FluidIn recent years the study of the commensal microbiota is driving a remarkable paradigm shift in our understanding of human physiology. However, intrinsic technical difficulties associated with investigating the Microbiomics of some body niches are hampering the development of new knowledge. This is particularly the case when investigating the functional role played by the human microbiota in modulating the physiology of key organ systems. A major hurdle in investigating specific Microbiome communities is linked to low bacterial density and susceptibility to bias caused by environmental contamination.
Research
Blocking Notch3 Signaling Abolishes MUC5AC Production in Airway Epithelial Cells from AsthmaticsWe demonstrate that NOTCH3 is a regulator of MUC5AC production
Research
Assessment of early lung disease in young children with CF: A comparison between pressure-controlled and free-breathing chest computed tomographyOur data suggest that FRC PC-CTs are less sensitive than TLC PC-CTs and that FB-CTs have similar sensitivity to PC-CTs in detecting lung disease
Research
Oxidative stress and abnormal bioactive lipids in early cystic fibrosis lung diseaseSeveral lipid biomarkers of early cystic fibrosis lung disease were identified, which point toward potential disease monitoring and therapeutic approaches
Research
What’s inside the box? Or shall we think outside the box?With the deadly and highly transmissible SARS-CoV-2 virus causing the COVID-19 pandemic, there is global concern about the danger of contaminating healthcare workers (HCW), particularly during airway management of infected patients.
Research
Assessing the unified airway hypothesis in children via transcriptional profiling of the airway epitheliumUpper and lower airways are conserved in their transcriptional composition, and variations associated with disease are present in both nasal and tracheal epithelium
Research
Rhinoviruses A and C elicit long-lasting antibody responses with limited cross-neutralizationRhinoviruses (RVs) can cause severe wheezing illnesses in young children and patients with asthma. Vaccine development has been hampered by the multitude of RV types with little information about cross-neutralization. We previously showed that neutralizing antibody (nAb) responses to RV-C are detected twofold to threefold more often than those to RV-A throughout childhood. Based on those findings, we hypothesized that RV-C infections are more likely to induce either cross-neutralizing or longer-lasting antibody responses compared with RV-A infections.
Research
Structural modification of the Pseudomonas aeruginosa alkylquinoline cell–cell communication signal, HHQ, leads to benzofuranoquinolines with anti-virulence behaviour in ESKAPE pathogensCitation: Rossetto V, Moore-Machacek A, Woods DF, ……. O’Gara F, McGlacken GP, Jerry Reen F. Structural modification of the Pseudomonas aeruginosa
Research
Does lung function in preschoolers help to predict asthma in later life?The earliest respiratory function assessments, within or close to the neonatal period, consistently show correlations with lung function and with the development of asthma into adulthood. Measurements of lung function in infancy reflect the in utero period of lung development, and if early enough, show little influence of postnatal environmental exposures.
Research
Complete Genomes of Three Pseudomonas aeruginosa Bacteriophages, Kara-mokiny 1, Kara-mokiny 2, and Kara-mokiny 3Here, we present the complete genome sequence of Pseudomonas aeruginosa phages Kara-mokiny 1, Kara-mokiny 2, and Kara-mokiny 3. These phages have lytic capabilities against P. aeruginosa and belong to the myovirus morphotype. The genomes of Kara-mokiny 1 and Kara-mokiny 2 are 67,075 bp while that of Kara-mokiny 3 is 66,019 bp long.