Skip to content
The Kids Research Institute Australia logo
Donate

Search

Traditional Beliefs, Practices, and Migration: A Risk to Malaria Transmission in Rural Nepal

The study aimed to explore sociocultural factors influencing the risk of malaria and practices and beliefs towards malaria prevention, transmission and treatment in a remote village in Khatyad Rural Municipality (KRM) of Nepal. A sequential exploratory mixed methods approach was used.

AnophelesModel: An R package to interface mosquito bionomics, human exposure and intervention effects with models of malaria intervention impact

In recent decades, field and semi-field studies of malaria transmission have gathered geographic-specific information about mosquito ecology, behaviour and their sensitivity to interventions. Mathematical models of malaria transmission can incorporate such data to infer the likely impact of vector control interventions and hence guide malaria control strategies in various geographies.

A global mathematical model of climatic suitability for Plasmodium falciparum malaria

Climatic conditions are a key determinant of malaria transmission intensity, through their impacts on both the parasite and its mosquito vectors. Mathematical models relating climatic conditions to malaria transmission can be used to develop spatial maps of climatic suitability for malaria. These maps underpin efforts to quantify the distribution and burden of malaria in humans, enabling improved monitoring and control.

A matter of timing: Biting by malaria-infected Anopheles mosquitoes and the use of interventions during the night in rural southeastern Tanzania

Knowing when and where infected mosquitoes bite is required for estimating accurate measures of malaria risk, assessing outdoor exposure, and designing intervention strategies. This study combines secondary analyses of a human behaviour survey and an entomological survey carried out in the same area to estimate human exposure to malaria-infected Anopheles mosquitoes throughout the night in rural villages in south-eastern Tanzania.

Spatial codistribution of HIV, tuberculosis and malaria in Ethiopia

HIV, tuberculosis (TB) and malaria are the three most important infectious diseases in Ethiopia, and sub-Saharan Africa. Understanding the spatial codistribution of these diseases is critical for designing geographically targeted and integrated disease control programmes. This study investigated the spatial overlap and drivers of HIV, TB and malaria prevalence in Ethiopia.

Ultra-short course, high-dose primaquine to prevent Plasmodium vivax infection following uncomplicated pediatric malaria: A randomized, open-label, non-inferiority trial of early versus delayed treatment

We aimed to assess safety, tolerability, and Plasmodium vivax relapse rates of ultra-short course (3.5 days) high-dose (1 mg/kg twice daily) primaquine (PQ) for uncomplicated malaria because of any Plasmodium species in children randomized to early- or delayed treatment.

Projected impacts of climate change on malaria in Africa

The implications of climate change for malaria eradication this century remain poorly resolved. Many studies focus on parasite and vector ecology in isolation, neglecting the interactions between climate, malaria control and the socioeconomic environment, including disruption from extreme weather. Here we integrate 25 years of African data on climate, malaria burden and control, socioeconomic factors, and extreme weather. 

Rethinking a hybrid malaria chemoprevention delivery strategy for children in sub-perennial settings: a modelling study integrating age- and seasonally-targeted delivery

The World Health Organization recommends perennial malaria chemoprevention (PMC), generally using sulfadoxine-pyrimethamine (SP) to children at high risk of severe Plasmodium falciparum malaria. Currently, PMC is given up to age two in perennial transmission settings. However, no recommendation exists for perennial settings with seasonal variation in transmission intensity, recently categorized as 'sub-perennial'.

Mapping malaria by sharing spatial information between incidence and prevalence data sets

As malaria incidence decreases and more countries move towards elimination, maps of malaria risk in low-prevalence areas are increasingly needed. For low-burden areas, disaggregation regression models have been developed to estimate risk at high spatial resolution from routine surveillance reports aggregated by administrative unit polygons.

Climate change could cause more than 500,000 malaria deaths in Africa by 2050

World-first research from The Kids Research Institute Australia and Curtin University predicts climate change could trigger more than 100 million additional malaria cases and 500,000 additional deaths in Africa by 2050, including substantial impacts on children.