Skip to content
The Kids Research Institute Australia logo
Donate

Discover . Prevent . Cure .

Search

Research

Global estimates of the number of pregnancies at risk of malaria from 2007 to 2020: a demographic study

The most recent global estimates of the number of pregnancies at risk of Plasmodium falciparum and Plasmodium vivax malaria infection are from 2007. To inform global malaria prevention and control efforts, we aimed to estimate the global distribution of pregnancies at risk of malaria infection from 2007 to 2020.

Research

Mapping malaria by sharing spatial information between incidence and prevalence data sets

As malaria incidence decreases and more countries move towards elimination, maps of malaria risk in low-prevalence areas are increasingly needed. For low-burden areas, disaggregation regression models have been developed to estimate risk at high spatial resolution from routine surveillance reports aggregated by administrative unit polygons.

Research

Traditional Beliefs, Practices, and Migration: A Risk to Malaria Transmission in Rural Nepal

The study aimed to explore sociocultural factors influencing the risk of malaria and practices and beliefs towards malaria prevention, transmission and treatment in a remote village in Khatyad Rural Municipality (KRM) of Nepal. A sequential exploratory mixed methods approach was used.

Malaria control a global effort

Global efforts led by Telethon Kids Institute’s Child Health Analytics program will see nations impacted by high rates of malaria empowered to develop their own controls and solutions.

Research

Severe outcomes of malaria in children under time-varying exposure

In malaria epidemiology, interpolation frameworks based on available observations are critical for policy decisions and interpreting disease burden. Updating our understanding of the empirical evidence across different populations, settings, and timeframes is crucial to improving inference for supporting public health.

Research

Updating estimates of Plasmodium knowlesi malaria risk in response to changing land use patterns across Southeast Asia

Plasmodium knowlesi is a zoonotic parasite that causes malaria in humans. The pathogen has a natural host reservoir in certain macaque species and is transmitted to humans via mosquitoes of the Anopheles Leucosphyrus Group. The risk of human P. knowlesi infection varies across Southeast Asia and is dependent upon environmental factors. 

Research

An archetypes approach to malaria intervention impact mapping: a new framework and example application

As both mechanistic and geospatial malaria modeling methods become more integrated into malaria policy decisions, there is increasing demand for strategies that combine these two methods. This paper introduces a novel archetypes-based methodology for generating high-resolution intervention impact maps based on mechanistic model simulations. An example configuration of the framework is described and explored.

Research

Human landing catches provide a useful measure of protective efficacy for the evaluation of volatile pyrethroid spatial repellents

The human landing catch (HLC) method, in which human volunteers collect mosquitoes that land on them before they can bite, is used to quantify human exposure to mosquito vectors of disease. Comparing HLCs in the presence and absence of interventions such as repellents is often used to measure protective efficacy (PE).

Research

A randomized, double-blind placebo-control study assessing the protective efficacy of an odour-based 'push-pull' malaria vector control strategy in reducing human-vector contact

Novel malaria vector control strategies targeting the odour-orientation of mosquitoes during host-seeking, such as 'attract-and-kill' or 'push-and-pull', have been suggested as complementary tools to indoor residual spraying and long-lasting insecticidal nets. These would be particularly beneficial if they can target vectors in the peri-domestic space where people are unprotected by traditional interventions.

Research

Fine-scale maps of malaria incidence to inform risk stratification in Laos

Malaria risk maps are crucial for controlling and eliminating malaria by identifying areas of varying transmission risk. In the Greater Mekong Subregion, these maps guide interventions and resource allocation. This article focuses on analysing changes in malaria transmission and developing fine-scale risk maps using five years of routine surveillance data in Laos (2017-2021). The study employed data from 1160 geolocated health facilities in Laos, along with high-resolution environmental data.