Skip to content
The Kids Research Institute Australia logo
Donate

No results yet

Search

Research

A global mathematical model of climatic suitability for Plasmodium falciparum malaria

Climatic conditions are a key determinant of malaria transmission intensity, through their impacts on both the parasite and its mosquito vectors. Mathematical models relating climatic conditions to malaria transmission can be used to develop spatial maps of climatic suitability for malaria. These maps underpin efforts to quantify the distribution and burden of malaria in humans, enabling improved monitoring and control.

Research

The prevalence of tuberculosis, malaria and soil-transmitted helminth infection in minority indigenous people of Southeast Asia and the Western Pacific: protocol for a systematic review and meta-analysis

Infectious diseases such as tuberculosis (TB), malaria and soil-transmitted helminthiasis continue to impose a significant global health burden and socio-economic impact. Globally, minority indigenous people are disproportionately affected by poverty and are shown to experience a disparate burden of disease and poorer health outcomes than the comparative majority population.

Research

Maps and metrics of insecticide-treated net access, use, and nets-per-capita in Africa from 2000-2020

Insecticide-treated nets (ITNs) are one of the most widespread and impactful malaria interventions in Africa, yet a spatially-resolved time series of ITN coverage has never been published. Using data from multiple sources, we generate high-resolution maps of ITN access, use, and nets-per-capita annually from 2000 to 2020 across the 40 highest-burden African countries.

Research

Malaria treatment for prevention: a modelling study of the impact of routine case management on malaria prevalence and burden

Testing and treating symptomatic malaria cases is crucial for case management, but it may also prevent future illness by reducing mean infection duration. Measuring the impact of effective treatment on burden and transmission via field studies or routine surveillance systems is difficult and potentially unethical. This project uses mathematical modeling to explore how increasing treatment of symptomatic cases impacts malaria prevalence and incidence. 

Research

A Maximum Entropy Model of the Distribution of Dengue Serotype in Mexico

Pathogen strain diversity is an important driver of the trajectory of epidemics. The role of bioclimatic factors on the spatial distribution of dengue virus serotypes has, however, not been previously studied. Hence, we developed municipality-scale environmental suitability maps for the four dengue virus serotypes using maximum entropy modeling.

Research

Seroprevalence and associated risk factors of chikungunya, dengue, and Zika in eight districts in Tanzania

This study was conducted to determine the seroprevalence and risk factors of chikungunya (CHIKV), dengue (DENV), and Zika (ZIKV) viruses in Tanzania.

Research

WALLABY pre-pilot survey: Two dark clouds in the vicinity of NGC 1395

We present the Australian Square Kilometre Array Pathfinder (ASKAP) WALLABY pre-pilot observations of two 'dark' H i sources (with H i masses of a few times 108 {M}_\odot and no known stellar counterpart) that reside within 363 kpc of NGC 1395, the most massive early-type galaxy in the Eridanus group of galaxies.

Research

Spatial distribution of rotavirus immunization coverage in Ethiopia: a geospatial analysis using the Bayesian approach

Rotavirus causes substantial morbidity and mortality every year, particularly among under-five children. Despite Rotavirus immunization preventing severe diarrheal disease in children, the vaccination coverage remains inadequate in many African countries including Ethiopia.

Research

Emulator-based Bayesian optimization for efficient multi-objective calibration of an individual-based model of malaria

Individual-based models have become important tools in the global battle against infectious diseases, yet model complexity can make calibration to biological and epidemiological data challenging. We propose using a Bayesian optimization framework employing Gaussian process or machine learning emulator functions to calibrate a complex malaria transmission simulator.

Research

Mapping the endemicity and seasonality of clinical malaria for intervention targeting in Haiti using routine case data

Towards the goal of malaria elimination on Hispaniola, the National Malaria Control Program of Haiti and its international partner organisations are conducting a campaign of interventions targeted to high-risk communities prioritised through evidence-based planning. Here we present a key piece of this planning: an up-to-date, fine-scale endemicity map and seasonality profile for Haiti informed by monthly case counts.