Skip to content
The Kids Research Institute Australia logo
Donate

Discover . Prevent . Cure .

CRISPR single base editing, neuronal disease modelling and functional genomics for genetic variant analysis: pipeline validation using Kleefstra syndrome EHMT1 haploinsufficiency

Over 400 million people worldwide are living with a rare disease. Next Generation Sequencing identifies potential disease causative genetic variants. However, many are identified as variants of uncertain significance and require functional laboratory validation to determine pathogenicity, and this creates major diagnostic delays.

Citation:
Fear VS, Forbes CA, Anderson D, Rauschert S, Syn G, Shaw N, Jamieson S, Ward M, Baynam G, Lassmann T. CRISPR single base editing, neuronal disease modelling and functional genomics for genetic variant analysis: pipeline validation using Kleefstra syndrome EHMT1 haploinsufficiency. Stem Cell Res Ther. 2022;13(1):69.

Keywords:
CRISPR SNV editing; Functional genomics; Inducible pluripotent stem cells; Kleefstra syndrome; Rare genetic diseases; Translational genetics; Variant of uncertain significance

Abstract:
Over 400 million people worldwide are living with a rare disease. Next Generation Sequencing identifies potential disease causative genetic variants. However, many are identified as variants of uncertain significance and require functional laboratory validation to determine pathogenicity, and this creates major diagnostic delays.