Skip to content
The Kids Research Institute Australia logo
Donate

Discover . Prevent . Cure .

A Genome-Wide Association Meta-Analysis of Attention-Deficit/Hyperactivity Disorder Symptoms in Population-Based Pediatric Cohorts

The SNP-based heritability for ADHD symptom scores indicates a polygenic architecture, and genes involved in neurite outgrowth are possibly involved

Citation:
Middeldorp CM, Hammerschlag AR, Ouwens KG, Groen-Blokhuis MM, St Pourcain B, Greven CU, ... Whitehouse AJO, et al. A Genome-Wide Association Meta-Analysis of Attention-Deficit/Hyperactivity Disorder Symptoms in Population-Based Pediatric Cohorts. J Am Acad Child Adolesc Psychiatry. 2016;55(10):896-905.e6

Keywords:
ADHD symptoms; GWA; SNP heritability; attention problems; meta-analysis

Abstract:
OBJECTIVE: The aims of this study were to elucidate the influence of common genetic variants on childhood attention-deficit/hyperactivity disorder (ADHD) symptoms, to identify genetic variants that explain its high heritability, and to investigate the genetic overlap of ADHD symptom scores with ADHD diagnosis.

METHOD: Within the EArly Genetics and Lifecourse Epidemiology (EAGLE) consortium, genome-wide single nucleotide polymorphisms (SNPs) and ADHD symptom scores were available for 17,666 children (<13 years of age) from nine population-based cohorts. SNP-based heritability was estimated in data from the three largest cohorts. Meta-analysis based on genome-wide association (GWA) analyses with SNPs was followed by gene-based association tests, and the overlap in results with a meta-analysis in the Psychiatric Genomics Consortium (PGC) case-control ADHD study was investigated.

RESULTS: SNP-based heritability ranged from 5% to 34%, indicating that variation in common genetic variants influences ADHD symptom scores. The meta-analysis did not detect genome-wide significant SNPs, but three genes, lying close to each other with SNPs in high linkage disequilibrium (LD), showed a gene-wide significant association (p values between 1.46 x 10(-6) and 2.66 x 10(-6)). One gene, WASL, is involved in neuronal development. Both SNP- and gene-based analyses indicated overlap with the PGC meta-analysis results with the genetic correlation estimated at 0.96.

CONCLUSION: The SNP-based heritability for ADHD symptom scores indicates a polygenic architecture, and genes involved in neurite outgrowth are possibly involved. Continuous and dichotomous measures of ADHD appear to assess a genetically common phenotype. A next step is to combine data from population-based and case-control cohorts in genetic association studies to increase sample size and to improve statistical power for identifying genetic variants.